提示:请记住本站最新网址:www.bxwxtxt.org!为响应国家净网行动号召,本站清理了所有涉黄的小说,导致大量书籍错乱,若打开链接发现不是要看的书,请点击上方搜索图标重新搜索该书即可,感谢您的访问!

笔下文学【www.bxwxtxt.org】第一时间更新《从全能学霸到首席科学家》最新章节。

是他们这种更小波长的光源占据优势。

“不枉费我花了45真理点啊。”

林晓心中感慨起来。

这样也算正常,毕竟,以他如今各学科等级,还要花费45真理点才能解决的技术,理当有如此作用。

这样看起来,虽然六十真理点花出去,没有探究到那个可能涉及到的系统的秘密,但是能够兑换到这两项技术,也还不算亏。

当然,封装材料这项技术,很快就能用上,至于这个生产工艺,就还需要等待以后光刻机真的造出来后再说了。

想到这,林晓也放下了心思,将这两项技术先放到脑海中的一边,反正存在系统那里的,也不怕忘记。

接下来,该看看另外的重点了。

也就是那几道从脑海中挖掘出来的几行公式。

林晓的眉头挑了挑,

今天花费了三次真理点,也让他记住了总共七道数学式子。

首先是之前兑换双工作台技术时的那两行数学式。

林晓脑海中回忆起了这两行数学式,然后从旁边拿起了草稿纸以及笔,而后便开始写了起来。

【ζ(1/2+it)=O(t^e)】

【ζ(1/2+it)/(t^e)=O(√plnp)】

写下这两道式子,林晓眉头皱起,开始思索起来。

第一行式子,他有印象。

“这似乎是……黎曼猜想?好像是黎曼猜想的弱化形式?”

想到这,林晓心中一震。

黎曼猜想的弱形式中,有一个林德勒夫猜想。

林德勒夫猜想是关于ζ函数于临界线上的增长速度的猜想,其表明了给出任意的e大于0,当t趋向于无限时,ζ(1/2+it)等于O(t^e),这对于黎曼猜想来说,是一种比较弱的形式,它最终能够推导出“给出任意e大于0,对足够大的n有Pn+1-Pn小于Pn^e(1/2+e)”。

不过,随后林晓又将注意力转到了第二行式子上,再次生出了疑惑。

这个,又是什么意思?

√plnp?

莫非等于说,上面那个式子经过形式的变换后,能够推导出下面的这个等式?

但猛然间,他的脑海中灵光一闪,再次想起了一个关于黎曼猜想的弱形式,也就是大质数间隙猜想,而这是一个比林德勒夫猜想要强一些的猜想。

而该猜想认为,如果黎曼猜想

笔下文学【www.bxwxtxt.org】第一时间更新《从全能学霸到首席科学家》最新章节。

本章未完,点击下一页继续阅读。